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ABSTRACT

Experiments indicate that a multigrid-type cycle can be used as an efficient precon-

ditioner in the iterative solution of the discrete problem corresponding to a singularly

perturbed elliptic boundary value problem. Motivated by a report of Goldstein, we ex-

plore the theoretical basis for the efficiency of such a preconditioner when applied to a

model problem. The techniques developed are also used to analyze a multigrid V-cycle

when used alone as a fast iterative solver.
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I. Introduction
b"

This work is motivated by a report of Charles Goldstein [7] in which the author

discusses the task of numerically solving the following elliptic boundary value problem:

2 2 u(x)
'f fxi a Ux , + c b(x)-+ao(x)u(x)=f(x) in Q1C.IR

u(x) = g(x) on a

where X = (Xl,X 2) E QZ, 0 < c << 1, the coefficients and data are sufficiently smooth,

and ai(x)>co>0 in S1, i=0,1,2.

The discrete problem arising from a typical discretization of (1.1) on a uniform grid of

mesh size h, h < e, is a large system of linear equations. For the solution of this system

to approximate the solution of the boundary value problem (1.1) with a fixed accuracy, we

must choose the mesh size small for small c, specifically, it is sufficient to keep the ratio

h/c fixed [1], [11]. In doing so, we not only get a much larger system, but the resulting

system is also more poorly conditioned.

With the goal of trying to solve this type of system, we use the conjugate gradient

algorithm as our iterative solver. It is known (e.g., [2],[9]) that if we apply the method

of conjugate gradients to the problem By = F where B is symmetric, positive definite,

then the number of iterations, NB, required to solve the system to within a given relative

error, 1iv - v'li/liv - v0 11 < 7, is given by

NB (R) <Cln(2/rl) V/A'B (1.2)

where K(B) = Am.(B)/Am:.(B), v' is the initial guess and v' is the i th approximant

to the solution, v. Our goal is to precondition the system so that the condition number,

K (B'), of the new system, BY' = F', is much smaller than K(B) and behaves nicely

(bounded or slowly increasing) as e and h decrease to zero.

It has been observed experimentally that a certain multigrid-type cycle is an inex-

pensive preconditioner for this system. The effectiveness of this preconditioner is quite

sensitive to the choice of the number of grids, k, used in the multigrid process. Fourier

1k,
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analysis was used in [7] in an attempt to prove that a careful choice of the number of

grids does guarantee a good preconditioner in the case where Q2 is a rectangle. Although

Fourier analysis is routinely used to study 2-grid multigrid cycles, the k -grid analysis, for

k > 2 , is quite unwieldly and is not usually attempted. The difficulty arises from the

use of coarser grids on which certain modes "alias" (see [3]) or are "not visible" (see [12]).

Unfortunately, this "aliasing" was ignored in [7]. The experimental evidence is so striking,

however, that it seemed worth trying to complete the analysis.

We examine the effectiveness of the multigrid preconditioner by considering a special

case of the boundary value problem (1.1) with a,(x) = 1, i = 0, 1, 2 , bi(x) - 0, i = 1,2,

Q = (0, 1) x (0, 1) and e real and small. It is for this model operator, AL = -e 2  +I, that

we prove our basic results. More general singularly perturbed problems such as variable

" coefficient and/or non-symmetric with positive definite symmetric part can be analyzed

using the properties of the multigrid preconditioner acting on A' together with such ideas

as spectral or norm equivalence, see [5] and [7].

Let h = 2 " for a positive integer, n. Discretizing this model problem on a uniform

grid, f
2 h = {(lh, mh) : 1, = 1,2,... ,2' - 1}, with mesh size, h, using a standard 5-point

discretization of the Laplacian (see Section 2.1), we obtain the linear system

A'uh := (-C 2 
'k +I)uh = fh. (1.3)

In Section 3.1 we define a symmetric linear operator, Mk, based on multigrid ideas, using

k - 1 auxiliary grids of larger mesh sizes, 2Ph, for p = 1,2,..., k - 1. In fact, the vector

Mk Wh is essentially one "partial" multigrid V-cycle applied as if to solve the problem:

Ahvh = Wh, (1.4)

starting with initial guess = 0, where Ah is the matrix resulting from the corresponding

discretization of the Dirichlet boundary value problem for Poisson's equation. In order to

obtain a symmetric operator, we take symmetric smooths. I.e., if rp smooths are done

on the p th grid in the fine to coarse part of the cycle, then rp smooths must be done on

the pth grid in the coarse to fine part. We take a fixed r. = r for all p=0,... , k- 1.

The adjective "partial" refers to the following property of this particular V-cycle: instead

of solving for the coarse grid correction exactly on the coarsest grid. 2r iterations of the

2
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smoother are applied. We choose the smoother to be a damped Jacobi iteration with

damping parameter, w, where 0 < La < 1. Taking a = 1 would correspond to an

undamped Jacobi iteration, but we exclude this choice. The choice w = .5 corresponds to

a Richardson iteration. Using Mk as a preconditioner for (1.3), we claim:
.4
.4

If the mesh size on the coarsest grid is choosen to be approximately equal

to the singular perturbation parameter, e, then the condition number of

the preconditioned system is bounded independent of c and h.

Defining JVfZ = Mk, where k is chosen so that h, ; e, we justify this claim in 3 steps:

1. In Section 3.2 we reduce the problem to finding appropriate upper and lower

bounds for the eigenvalues of MA h . Let q : *h {1,2,...,(2* - 1)2}

(iih,i2 h) e-* qi,i = (i 1,i 2 ), be a given ordering of the (2' - 1)2 points of

2ih, and let Jai} be a (given) complete set of eigenvectors of Ah. Define a

(2n _ 1)2 x (2n 1)2 matrix, M, by

(A4)qi,qj = hi,

where
Aii : (MhA'ai, aj) :

for each i = (il,i 2 ), j = (jl,j2) where 1 < i1 ,i 2 ,j 1 ,j 2 < 2n and (.,.) is thew

discrete - L 2 inner product. Using this eigenfunction analysis (Fourier analysis),
the problem reduces to finding bounds on the eigenvalues of A. The off-diagonal

elements of M represent the "aliasing".

2. In Section 3.3 we obtain a formula for a bound, C,k,, such that, for every i,

Therefore we have diagonal dominance of the matrix, M, provided Ch.k,r,,,

where

Ch k,r,.- SUPCh,k,r,,,

3 o

%%
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can be shown to be less than one. The constant Ch,k,r,, is calculated for

r = 1,2,3,4, w = .5,.6,.7,.8,.9, h = 1/2,1/4,1/8,...,1/8192 and all possi._

ble corresponding values of k. All computed values of Ch,k,r,, are less than one

with the exception of the case where only one smoothing is used and w < .7.

3. In Section 3.5 we restate the bounds given in (7] on the diagonal entries of the

matrix. These bounds are used, combined with the diagonal dominance, to show

that:
cI2 < AMA(MaA) ! Amx(MA'A) < c2e ,

for constants c1 , c2 > 0. The diagonal dominance of M is needed only to guar-

antee the positivity of the lower bound.

In Section 4 we describe some experiments which illustrate the efficiency of using the

optimal number of grids in the multigrid preconditioner. Experimental comparisons are

made between three different solvers for the model problem. In a preconditioned conjugate

gradient routine, two preconditioners are used, first the preconditioner analyzed in this

paper, namely the preconditioner based on the Laplacian with smoothing on the coarsest

grid, and secondly a preconditioner which is based on the model operator itself, solving on

the coarse grid. The third solver used in the comparison is a symmetric multigrid V-cycie.

The techniques used in the analysis of "multigrid-as-a-preconditioner" can also be

used to analyse "multigrid-as-a-solver". This analysis is simpler than the preconditioner

analysis since we don't need diagonal dominance (and we don't have it), see Section 5. In

Section 6 we show how the k -grid convergence bounds obtained in this way compare to the

experimentally observed convergence rates and to V-cycle convergence bounds obtained by

other methods.

4



2.1 Notation

Consider the two-dimensional Dirichlet problem

{-/u=f in Q= (0,1)x(01) (2.1)
u =0 on 0f/

where L = = a 2 /x . We discretize this problem on a family of grids. Let h = - n,

as in Section 1. Choose a positive integer k, k < n. Define a coarse grid mesh size

hi - 2k-lh . In Q2 we define k intermediate grids, WP , p - 1,2,...,k with mesh sizes

hP = 21-Ph, .Clearly h = hk and

fP = {(xi, y) = (lhp, mhP) l,m = 1, 2, ... , Np - 1} (2.2)

where NP = 1/hp and p = 1, 2, ... , k.

We define the discrete operator, AP, which is the negative of the discrete five point

Laplacian, on the grid W2P, using the standard five-point discretization of the differential

operator, -A (see e.g., [6]). Each Ap is a sparse (Np - 1)2 x (NjP- 1)2 matrix with a_(p)

complete set of eigenvectors, a , given by:

ai )rn, n) = 2sin (ii rmhp) sin(i2 7rnhp) m, n = 1,...,Np - 1. (2.3)

where i = (il, i2) , and ii, i2 = 1,2,...,Np - 1 . The corresponding eigenvalues are:

u _ 4 - 2 cos (iirhp) - 2 cos (i2 irhp)h2(2.4)

As usual, the multigrid operators we consider are constructed from smoothers, GP,

p = 1, 2,..., k and intergrid transfer operators, I._. and I - 1 , p=2,3,...,k .

To simplify the analysis we choose Gp(., .) to be a damped Jacobi smoother, defined

by

Gp(up, fp) = (I - 2wcpAp)up + 2wcpf

= Gup + (I - Gp)A lfp (2.5)

where cp = h2/8, p = 1,..., k, and CP is the linear part of GP. We require that

0 < w < 1. We do not allow w = 1, which would correspond to a Jacobi iteration. The

constant, cp, is approximately equal to the inverse of the spectral radius, p(Ap). In fact.

cpp(Ap) = 1 - 0(h2), and therefore OP is a contraction, i.e.,

PP

p(I - 2L,;'cPp) < 1 .(2.6)



We define inner products and norms by:

(uP, vP)p = hp Z up(x),P(x) (2.7a)
zeflp

and

I upl 2 = (up, up) , (2.76)

for uP, vP defined on W .

For the projection and weighting operators we take IP to be linear interpolation:

1 2 1 [h: 2.aPL- 24 2 ,t (2.8a)

and IP - 1 to be the adjoint of relative to the discrete - L 2 inner products defined by

(2.7a):

11 2 11",..
P- = 2 4 , (2.8b)16 1 2 1 %

where we have used the "distribution" and "collection" stencils as in [10].

In the eigenfunction analysis we need some notation and simple formulas. Let i -

(i 1 , 22 ). Define

(P&) 2 ( IL

Co( 2 (2.9a)

and

_(p) Cos2 (9

A simple trigonometric identity gives us

= (1 - 2C7 (1) (2.10a)

and
r(p- 1) , (P))2(2l b=(I 277 (2.10b

;. ,.,, . • ... :+ i' i +I + I+I| i + I - I I | I , • n , '6



The eigenvalues of Ap can be written as

(p) 4(2 - e, - ni ))

h2 
(2.11)

A simple calculation shows us that the effect of the projection on the eigenvectors of

Ap can be expressed as (2 )

ipp-x(P) = (P) (P) (P-1)
Ip- I, Ck 17 i (2.12)

The corresponding formulas for interpolation is

,' C, (P-1) -(p) (P) (p) (p), (P) (P)
P-1u = 7 ai a/ )?7i -t (N1 -i (2.13)

(p)( _(p)-,o p) (1 v (p))a(p)

(p))
-, ()j- i) )a ,,N+'-I 2 + (1- ())( 1 - , N-,,+,)•

" Note that eigenvectors of Ap are also eigenvectors of O,. The eigenvalue, giP, of

Gp, corresponding to a, , is given by

(p) (p)
"t = 1 - 2~cpv, ,(2.14)

where the constants cp are related by

cp-1 = 4cp. (2.15)

When we apply the multigrid algorithm, we transfer vectors to coarser grids. In the

process we lose information. In this two-dimensional problem with an (h- 2h) grid structure

the four (if i1 0 Np/2 and i2 5 Np/2) eigenvectors a ,. ( 2)'a(p)0 I,, -- t N P- 11 1) ' -- (i ,N +,- 2:+)

and a -N ) defined on QP, are indistinguishable on P- . There are also 2N V -3

eigenvectors as defined on S2P which are indistinguishable from the null vector as defined

on QP- '. This phenomenon is what is referred to as aliasing.

This aliasing plays an important role in the analysis of the multigrid process and we

introduce the following notation. Given two multi-indices i = (il, i1 ) and j = (j1, j2),

consider a (k) and a (*k). If ce) = -c- then we write i -- j (p). If a(P) and a (p) are not

linearly dependent then i ?6 J (p).

(2) In the cases where I i I:= max(i, i2 ) > 1/NV, one should replace o, by its

proper (unique) representation, a- where I I 1< Np-. However. Formula (2.12) is

also correct in this form.

. - 7
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2.2 Intergrid Operator Identities

A multigrid cycle consists of smoothings and intergrid transfers. The smoother is

applied to reduce the high frequency (rough) components of the error. The residual is

transfered to a coarser grid where solving exactly for the error correction is less expensive.

By solving and then interpolating this coarse grid correction back to the fine grid, the low

frequency (smooth) components of the error are reduced. In the boundary value problem

(2.1), the eigenfunctions are easily identifiable as rough or smooth, being products of sine

functions. The same is true for the discrete operators, AP, 1 < p :S k .To gain insight

into the properties of the multigrid process we study the effect of a multigrid cycle on the

eigenvectors of Ak.

Using formulas (2.12) and (2.13) it is clear that transferring ap) from LV' to SQP--

and then interpolating back, results in a linear combination of the four eigenvectors which

alias from W2p to 2P-1 -A 'smooth' eigenveetor, i.e. and -(p) close to zero, picks up
'rougher' components. In the full k-grid problem where there are 4 k-

i vectors aliasing

from f k to Q1' , keeping track of the aliasing is difficult. Fortunately, there are a few

simplifying features. The second of the following three Lemmas, in particular, simplifies

the analysis. Define

II. I ,+
-  1 < p, < p2 < k (2.16)

Lemma 2.1

If j-,i (n) and j 6i(n+l) for some 0!< n<k, then

0 if n <p< k;
(aP) (- ,-)) n )((f")I &()(a(p)a(P) P <  (2.17)

rl 17 )aj, In C k ),,ia~ , ,P))p p-

Proof of Lemma 2.1

Let j -.1 (n) and j % (n+l) for n., 0 < n < k.

For p > n, the orthogonality of the -(  gives

A X, p



, I  > = o. (2.18)

For p _ n and i L (0, 0) (p),

re=p+I1

m-p+ 1

Since Ik= In Ik, then

(Cp), jka(k))p (n,,(p), In(k (2.20)

Using j i (n) and (2.19) gives

(a p) l a I)) ,(m) ( " , ( P-j )" i ' )P "( .1
(1 , :Scr k))p = (i 7i ) )) ,.n ak)) (a )() (2.21)

m=p+l

If i - (0, 0) (p), then (2.21) is trivially true. I

Lemma 2.2

Forany n, I <n<k, and i,;4(0,0) (n),

oi , Ixl)-ok) )n 1 (2.22)
j-i (n)

Proof of Lemma 2.2

If n = k then ji(1) impliesj=i. Since ( i )k -1, (2.22) holds for n =k.

Assume ~ + (c41+), 1,+l )).+i 1= 1 for s, where s < k.

Define

V= i = (ii 2 ), (2.23)
5'..

I = (N.+. - i1 , 1 2 ),

i3 = (Ns+1 - ii,N+1 - i2 )

-4 ' = (i, N,+1  i2 )

9
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I - ,level k

_____ _____ _____ _____level k- 1

2p

level s= k -2

Figure 2.1: A splitting of the j, J - i(s), where s k --2.

The set {j j i(s)} can be split into four disjoint subsets corresponding to all
i-sz (S + 1) , j _I 2 (S + 1), j 0 i (s + 1) and J -- i4 (s + 1). Figure 2.1 shows this

schematically for the case s =k - 2. Therefore the summation can be split as:

S as)Ick)sf= (~~ I±k ))~ (2.24)

ji()j- 1 ( 3+ ) j 1 3+ )I) 9 1) J 1 3 1

10

. Me, -®



Using (2.13) and the orthogonality of the ai the summation can be written as:

Z I(a) I =I)+ ) (+1 (sl .a.+)I+1 )siI

(i) ((+1)j-i 3 (a3)

+ (,,,k+ L)(. -I +\c , 4 '+ Ik+ , ()S+ I
j-i2 (+1)

By the inductive hypothesis, each summation on the right hand side is equal to one and

the coefficients also sum to one. I

Lemma 2.3
Forall n, I <n<k, and i6(O,O) (n),

Z (a,") ,la(.k))n 1= 1 - (, 7f+ (2.25)
j-i (n)# . (t+ t)

Proof of Lemma 2.3

Identity (2.25) follows directly from Lemma 2.2 since

(C, , Ikn tl),, I' ( ')  " r "''

j-t (n) j--i (n)
j76z (n+l) "

- ,n+i) (n+i) (0,(f+l) In+l (k)

j~i (n+1)

,,.(n+1) (n+l)

11 'E.

$'
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3.1 Definition of the Preconditioner

The multigrid preconditioner is based on the discrete five point Laplacian. MVk is one

standard multigrid symmetric V-cycle starting with zero as the initial guess, except that

the coarse grid correction is obtained by smoothing instead of by solving exactly on the

coarsest grid. Having choosen a fixed number of grids, k, the multigrid preconditioner is

defined recursively. Choose a positive (integer) number of smoothings, r. Then Mkfk

Uk where ii (= Mpfp), for fp defined on f2P, p = 1,...,k, is given by:

1.) Smooth r times starting with initial guess = 0:

, = G(0,f,). (3.1a)

2.) Compute the residual and transfer to the coarse grid:

rp = fp - Apfip, fp- = IP-1rp. (3.1b)

3.) Compute the coarse grid correction:

If p = 2, uly- 1 =Ii =G r(0, f) (3.1c)

If p > 2, y-1 = MP-ifP-. (3.1d)

4.) Add the coarse grid correction:

fly= u + IP_ Ui-X (3. 1e)

6.) Smooth r times starting with initial guess = ip:

iiP = G(iP, fp). (3.1f)

Because we have started with an initial guess of zero, the multigrid preconditioner is

a linear operator acting on fk. This definition of Mk can be rewritten as:

NIP = (I- )A; + rlpMp_ I - a v pI ... (

and M, = (I - 0r) A-'.

These identities rely on the commutivity of Gp and Ap , p= 1 2 .... k

12
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3.2 The Problem

As remarked in the introduction, it is sufficient to examine the effectiveness of the

multigrid preconditioner by considering the model problem (1.3). We take Q2=(.1 x

(0, 1) and c real and small. It is for this model operator, AL = _62L+1, that we prove

our basic results.

Define

A = c2Ak±+I. (3.3)

* Writing the symmetric preconditioner as Mk = Q~kQk, the preconditioned system is

AY= F where A"' = QkAeQ~k. Experimental evidence suggests the following:

Conjecture:

Let r > 0, 0 < w < 1, h > 0 and e > h. Choose the number of grid levels, k, so

that h, - 1h ;-- c. Define MZ' = Mk. Then there exist constants c1 , C2 > 0 such that

cl 62 < Ammn (MhZAc) 5 -Am., (MhAh) : C
2 2

* What we prove in this paper is:

Theorem 3.1

Let r = 1,2,3,4 and w =.7,.8,.9 or r = 2,3,4 and '..=.5,.6. Let h > 1/8192 and

e > h. Choose k so that hi = 2k-1h ;z e. Then there exist constants cl(h), C2 (h) > 0

such that

cihe< Amin(MtA') S! Amax(MhA") < c,(h)e2  (3.4)

Remark 3.1

For fixed c, r and w, numerical evidence indicates that, as h -f0.

ci(h) -* c> 0

C2(h) - 2 > 0.

* Remark 3.2:

Since A"' is similar to 11h A' (3.4) implies that IC( .4) isbounded in1depenidenit

13



Proof of Theorem 3.1:

Define
- ( M ( 2 Ak + I) a(k), a(k) ). (3.5)

• (k)an
Because of the aliasing, mij can be nonzero for j #. However if i 6 j (1) (i.e. a i and

(k)a3  are distinguishable on the coarsest grid) then Ai, = 0.

Choose m = (ml, m 2 ) where Imj := Max(m, M2 ) < Nk.

Let J, 32,..., J4"- be some ordering of the j -- m().

We now define M,,m to be a 4 k-1 x 4 k-1 matrix given by

(.Am)p,q = p , (3.6)

We consider the subspaces

S': = linearspanQ)k) ,m(1}), (3.7)

where Irnl < N&. The Sm are orthogonal (with respect to the inner product defined by

(2.7a)) subspaces and invariant under Mk(c 2Ak + I). Therefore if we show that

CIe 2 < Amin (a4m) ! Am. (-Mm) < c2 F2  (3.8)

for each m, then (3.4) will be proved.

By the Gershgorin theorem, any eigenvalue, A, of .4Mm must satisfy

JA-Mi.a < Z P,) (3.9)

for some -, m (1).

We show that A4Mm is diagonally row dominant and therefore we can use information

about the behaviour of the diagonal entries of Mm to prove i3 8). Specifically. in Sec-

tion 3.3 we give a computable formula, (3.22). for a quantity C. i r - ndepend, 4

such that

l ,..C h Ci, .... ,, , ,3. 1),

14



For certain choices of r and w, Ch,k,r,, has been computed, for every i, showing that

sup C,k,,,, < 1 for the k = 2,3,..., 12 grid problems, using h -2 to

h = 2-13. See Section 3.4. In Section 3.5 it is shown that 3 c, e > 0 such that

ae _ min j ii < max /Mii _ .(3.11)
jil < Nk lil < NA,

Combining (3.9),(3.10) and (3.11) we have, for any eigenvalue, A, of MM,

(1- C&,,,,) !22 5 < (1 + Ch,k,,W,) &_2, (3.12)

which verifies (3.8) with ci = (1 - ¢hk,£,)!z and C2 = (1 + Ch,k,,,) e.
Note that a common factor, e2- k

)

N I + 1, appears in all the p,,, j - i (1), therefore

(3.10) is equivalent to

Z (M,4kal' )k C',,k,r,w ( MCr at )k- (3.13)
j-i (1)

Let
A, := (Mk ,, Ci,, ) A,: (3.14)

3.3 Bounds on the Off-Diagonal Elements of Mm.

When applying a multigrid-type cycle to an eigenvector, at, of Ak, the resulting
S () (k)vector, M a, , is a linear combination of a, and al of the other eigenvectors, a3

which alias with at on the coarsest grid. In this section we give a formula for a bound

on this aliasing. Specifically, we find an expression, C where

J,: = (' (A; )  I  -<) ( k) (3 15--" (Vkat:, a]'))1 Ch,k,,, ,, M )k.(315

3 -, (])

Let 1 = (Iz, 12 ),h,k,r and w be fixed.

"'efine

=cos 2 (!2,h) (3.16a)

15



gP ( P () ,P) (3.16c)

=P o ff -' , ,' i )p (3.16d)

and v,, (Apa a c )p, (3.16e)

where the i, r, h and w dependence has been suppressed in the notation and only the grid

level is displayed.

The following lemma gives a formula for any entry in the row of M, corresponding

to i, where i m (1).

Lemma 3.1

For any- i (1),

(A ,a(,), a(')), = 2wc, e ( 171 4m 7.7m)(a (P) I + Ik "'k)
p=1

(3.17)

Proof of Lemma 3.1

A proof by induction shows that for every s, 2 < s < k,

, '), = 2  Zc, ev  4gpnmm " "),lp p+1 - )PI

P=1 ml

(3.18)

Taking s = k gives (3.17).

For s = 2, (3.4), (3.16) and (2.12) give

(2) 2), 2," ( )( 2

(112al, :(2))2 = ((I - G2 ) A 2 -' x 2) a) 2

r (21 (2)/ '

+ ((I - G) .4 ' G~ IJ Ga 2 G )a (3 19)

2) (2) + 2 )

Substituting 4c 2 = cl, proves (3.18) for s = 9.

16
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Assume (3.18) is true for s - 1 grids, s > 2. For the s-grid problem, (3.4), (3.16)

and (2.12) give
-

(M. a ') -t) = ((I - G2r) A-'-'s, a(3)),

(3.20)

+ ( ,1'C_(s)\-i2+cGes.g. , is

Using the inductive hypothesis with I-' replacing (S1) and using 4c, (=-z

proves (3.18). I

Lemma 3.1 can be used to get an expression for Ji, but the summation over all

1j i (1) would be difficult to compute. Theorem 3.2 shows that J, can be bound by an

exprt.ssion which is no more complicated tlian the expression for Di - (Mkai ), aik))k.

We claim that the Ji can be bounded by an expression which is no more complicated

than the expression for Di (Mkak), a i k) :)

Theorem 3.2

a.) Di = 2 wck e 4 4g",, . (3.21a)
P=1 \m=P+ i

k- 1 ( k kk7b.) J. < 2wc, E e 1- I I ,77m)) ( 41g. (3.21b)
p=1 M=Ft- 1n=p+l

--. 17
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Proof of Theorem 3.2

a.) Using Lemma 3.1 with j = i, combined with equations (3.16c) and (2.12) proves

(3.21a).

b.) To prove (3.21b), split the grid levels by partitioning the j -i (1), j 5 i. See

Figure 3.1 for a schematic illustration for k = 3. For each n = 1,2,..., k - 1 consider

the j's such that j ,- i(n) but j 76 i (n + 1). Lemma 3.1, Lemma 2.1, Lemma 2.3

and (2.6) lead to the following bound:

k-I

I, (w k (3.22)
n=1 p-i (n)

1-hi (n+1)

k-1 / n

< 2 wCk Z (1 - n+lTn+l) 1ep 1 m7m 41gmIjm.m.
n=1 p=1 m=p+i M=p+l

Changing the order of summation gives

k-i [k-I n

J1, < 2WCk 1: f LZ(1-+17n+I) rH IgmlI& (3.23)
p=1 p re=p-" I

:: Observe that the quantity in square brackets can be simplified to:

k

1- H mr77m. I
m=p-I- 1

18



^ level 3

Ilevel 2

level 2

Figure 3.1: A splitting of the j, j ~ i (s), j 5# 1.

x 3 .- i1(1), j? Z(2)

G) j -i1(2), j 7i(3)

Z~ (3).

Remark 3.3

The constants Chk,, can now be expressed as

Ch,k,r,, = sup (Cik,r,)

where
k-i k
E1 kp -1  - mI m m) (mrI 4Igmk m?,m)t~~ru p=--1 m=P-- ) (m=p+l

= k(3.24)
ep 4g'~ r2 q

Note that the denominator has one more term in the sum than does the numerator.

19

-- .. *



3.4 Computed Values of the Off-Diagonal Bounds

Ideally, one would like to find analytic bounds for C', independent of i,h and

k. On the other hand, bounds are easily computed for any given h, k, r and W.

Figures 3.2-3.5 indicate the dependence of Ch,k,r,w on i = (il, i2 ) for h = 1/64.

r = 1, w = .8 and k=2,3,4 and 5 grids. The maximum is taken on the boundaries i1 = 1

or i= = 1. Along the boundary i2 = 1 there are 2 k-2 relative maxima for the k-grid

problem. (For all values of h, k, r and w tried, the maximum of C' was attained at (1, i2 )

and (i 2 , 1) for some i2 .) Figures 3.6-3.9 show the dependence on r for k = 4 grids.

Tables 3.1-3.8 give the calculated bounds, suplij < 1/ (Ch,klr, ,for w = .5, .8 and

r = 1,2,3 and 4. The multi-index at which the supremum was attained is listed below the

bound.

To find bounds for w = .8 and r = 1,2, 3, 4, independent of h and k, we used

h = 1/8192 (which means > 67 million points on the fine grid). These numnbers are

bounds for all h > 1/8192 and all k corresponding to these meshsizes. Observing the

asymptotic behaviour leads one to believe that they are also bounds for all h < 1/8192

and any number of grids, k. See Tables 3.9-3.10.

20
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2 GRIDS

0

64l

Figure 3.2: C',k,7 ,, for h =1/64, r =1, w = .8

0

Figure 3.3: C' for h =1/64, r =1, u; .8
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0

Figure 3.5: C',k7,., for h =1/64,r= 1, w = .
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0

64i

Figure 3.6: CAkw for h =1/64, 4grids,w= .8

2 SMOOTHS

Z2-

0

64

Figure 3.7: C4j., for h =1/64, 4 grids, w = .8
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r.. '. -- - -. ... - -

3 SMOOTHS

0

Figure 3.8:- C'k,, for h =1/64, 4 grids, wLa .8

4 SMOOTHS

0

Figure 3.9: C4k,, for h =1/64, 4 grids, w .8
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Table 3.1 Cwkr, W= .5 , r= 1

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids

1/16 .4640 .7165 .8026
(1,9) (1,11) (1,11)

1/32 .4688 .7530 .9484 1.025
(1,19) (1,22) (1,21) (1,11)

1/64 .4707 .7632 .9942 1.149 > 1

(1,37) (1,45) (1,41) (1,21)

1/128 .4712 .7669 1.004 > 1 > 1 > 1
(1,74) (1,89) (1,81)

1/256 .4712 .7669 1.006 > 1 > 1 > 1 > 1
(1,149) (1,178) (1,163)

1/512 .4712 .7671 1.007 > 1 > 1 > 1 > 1

(1,298) (1,357) (1,325)

Table 3.2 Ch,k.r,w W=.5 , r=2

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids

1/16 ..3115 .4296 .4680

(1,9) (1,5) (1,5)

1/32 .3196 .4574 .5441 .5573
(1,17) (1,10) (1,11) (1,11)

1/64 .3215 .4658 .5700 .6084 .6142
(1,35) (1,19) (1,22) (1,21) (1,11)

1/128 .3220 .4680 .5771 .6277 .6591 .6643
(1,70) (1,39) (1,44) (1,23) (1,21) (1,21)

1/256 .3221 .4685 .5790 .6349 .6741 .6856 .6876
(1,139) (1,77) (1,88) (1,45) (1,41) (1,43) (1,43)

1/512 .3221 .4688 .5795 .6368 .6782 .6923 .6997
(1,278) (1,155) (1,177) (1,91) (1,82) (1,86) (1,43)
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Table 3.3 Ch,k,,., w = .5 , r = 3

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids

1/16 .2200 .2998 .3102
(1,7) (1,5) (i,5)

1/32 .2271 .3283 .3484 .3581
(1,15) (1,9) (1,5) (1,5)

1/64 .2285 .3346 .3694 .3961 .3981
(1,31) (1,18) (1,10) (1,11) (1,11).

1/128 .2289 .3362 .3756 .4093 .4165 .4170
(1,61) (1,36) (1,20) (1,22) (1,21) (1,21)

1/256 .2290 .3367 .3773 .4130 .4243 .4297 .4302
(1,123) (1,71) (1,39) (1,44) (1,23) (1,21) (1,21)

1/512 .2290 .3368 .3777 .4139 .4279 .4356 .4366
(1,246) (1,142) (1,78) (1,88) (1,46) (1,41) (1,42)

Table 3.4 C, w=.5 , r= 4

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids

1/16 .1689 .2253 .2368
(1,7) (1,3) (1,3)

1/32 .1732 .2481 .2659 .2684
(1,14) (1,7) (1,5) (1,5)

1/64 .1747 .2550 .2823 .2876 .2880
(1,27) (1,15) (1,9) (1,10) (1,9)

1/128 .1749 .2567 .2868 .2945 .3013 .3016
(1,54) (1,31) (1,18) (1,20) (1,11) (1,11)

1/256 .1750 .2570 .2880 2971 .3081 .3089 .3090
(1,109) (1,63) (1,35) (1,19) (1,23) (1,19) (1.19)

1/512 .1750 .2571 .2883 .982 .3099 3125 .3131

(1,217) (1,126) (1,70) (1,38) (1.47) (1,25) (1.26)
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* Table 3.5 Chkrw w = .8 , r 1

h 2 grids 3 grids 4 grids 5Sgrids 6 grids 7 grids 8 grids

1/8 .2801 .3473
(1,S) (1,3)

1/16 .3448 .4724 .5071
(1,9) (1,5) (1,5)

1/32 .3565 .5080 .5894 .6015
(1,17) (1,9) (1,11) (1,11)

1/64 .3581 .5166 .6179 .6647 .6698
(1,34) (1,19) (1,22) (1,21) (1,21)

1/128 .3586 .5188 .6256 .6857 .7243 .7293
(1,68) (1,37) (1,44) (1,41) (1,21) (1,21)

1/256 .3587 .5194 .6278 .6916 .7423 .7531 .7551
(1,136) (1,75) (1,87) (1,45) (1,41) (1,43) (1,43)

1/512 .3587 .5195 .6283 .6938 .7471 .7609 .7695
(1,273) (1,150) (1,175) (1,89) (1,82) (1,86) (1.43)
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Table 3.6 C'h,k. ,w w .8 , r = 2

h 2 grids 3 grids 4 grids 5 grids [6 grids 7 grids 8 grids

1/16 .1954 .2552 .2640
(1,7) (1,3) (13

1/32 .2001 .2840 .2993 .3013
(1,14) (1,7) (1,5) (1,5)

1/64 .2013 .232 .3223 .3252 .3268
(1,28) (1,15) (1,9) (1,10) (1,9)

1/128 .2016 .2956 .3285 .3337 .3387 .3389
(1,55) (1,31) (1,17) (1,20) (1,11) (1,11)

1/256 .2017 .2961 .3299 .3387 .3473 .3499 .3500
(1,111) (1,63) (1,34) (1,18) (1,21) (1,19) (1,19)

1/512 .2018 .2963 .3304 .3402 .3497 .3537 .3538
(1,222) (1,127) (1,69) (1,36) (1,42) (1,39) (1,38)

1/8192 .2018 .2963 .3305 .3407 .3505 .3550 .3581
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Table 3.7 C0 .,... '= .8 , r = 3

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids S grids

1/16 .1353 .1880 .1891

(1,6) (1,3) (1,3)

1 /32 .1385 .1993 .2077 .2088
(1,12) (1,7) (1,3) (1,3)

1/64 .1393 .2032 .2233 .2240 .2243
(1,24) (1,13) (1,7) (1.7) (1,7)

1 /128 .1395 .2044 .2267 .2296 .2303 .2307
(1,47) (1,27) (1,15) (1,7) (1,7) (1,7)

1/256 .1396 .2046 .2278 .2339 .2341 .2353 .2353
(1,95) (1,54) (1,29) (1,15) (1,14) (1,14) (1,14)

1/512 .1396 .2047 .2281 .2348 .2357 .2369 .2370
(1,189) (1,108) (1,58) (1,30) (1,15) (1,27) (1,29)

Table 3.8 , .... = .8 , r= 4

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids

1/16 .1039 .1441 .1482
(1,5) .3 , )

1/32 .1057 .1531 .1628 .1629
(1,10) (1.6) (1,3) (1,3)

1/64 .1067 .1557 .1705 .1716 .1716

(1,21) (1,12) (1,6) (1,6) (1.6)

1/128 .1068 .1563 .1736 .1761 .1762 .1762

(1,42) (1,24) (1,13) (1.7) (1.6) (1.7)

1/256 .1069 1565 .1742 .1788 .1795 .1797 .1797
(1,84) (1.Is) 1.26) (1.13) (1,13) (I1 3) (1,131

1/512 .1069 .1565 .1744 .1795 .1,03 .1808 .1810

(1,168) (1,95) (1,51) (1,27) 1.25) (1,13) (1,13)

'..9

• - ".' -°. '*.'.,',.-.'-" ...... '......-."......."...........-....-........ ,e * ,* " ..... " • _.*



Table 3.9 Ch,k.TM, Lo . h =1/8192

r 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids

1 .3587 .5196 .6284 .6945 .7487 .7638
2 .2018 .2963 .3305 .3407 .3505 .3550
3 .1396 .2047 .2282 .2351 .2370 .2375
4 .1069 .1566 .1745 .1798 .1812 .1818

r 8 grids 9 grids 10 grids 11 grids 12 grids 13 grids

1 .7800 .7896 .7933 .7953 .7948 .7951
2 .3581 .3589 .3590 .3592 .3592 .3952
3 .2390 .2394 .2398 .2398 .2398 .2398

14 .1821 .1824 .1825 .1825 .1825 .1825

Table 3.10 k =12 h =1/8192

.r ~ 6 =.7 =.8 ~ =9

>1I > 1 .980 .79.5 .648
2 .721 .554 .439 .359 .305
3 .444 .345 .282 .240 .210
4 .318 .254 .212 .183 .161
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3.5 Bounds on the Diagonal Elements of tim

Recall that the diagonal elements, A,,, of Mm where i m (1), are given by,

M - , a ck, ) . (3.25)

Since A' = -Ak + I and hence

= i2 ) + 1) D, (3.26)

the bounds on the ji,, can be obtained from suitable information about the D, 's. The

following characterization of the effect of the preconditioner on smooth and rough eigen-

vectors of Ak is central to the analysis and was given by Goldstein in [7].

Theorem 3.3

For r > 1, w suitably chosen and h sufficiently small, the D,'s are positive real

numbers such that:

a.) D, = 0(h2) for v, k)< d/hI (3.27a)

b.) D (1() > dh 2 (3.27b)(k) ,

where 0 < Y7 < 1 and 77 is independent of h and d is a constant.

We prove a more explicit version of the same resvlt:

Theorem 3.4

For r > 1, 0 < < l and a fixed constant, d, where 1 < d < 2.2

a.) h2 < Di< 2rh for (k) < d (3.28a)
max(2. d(1+ri )) - - h

dbo -(1-) fo (k) > d (3.28b)
b.) < D, < for , h-.8(1 + rw ) v ) - V (k

Proof: in appendix.
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These theorems give us bounds on the Mii, and, for example, Theorem 3.4 leads to

the following bounds:

Fr k) d U;(1 - wJ)h 2 2rwd e2  ()-h2 max (2, d(1 + rw)) -3 d. (3229d

For v(k) > d dw(1- -w)c < < C 2 + . (3.29b)
hi8(1 +rw) -d

Therefore, taking h, 1 - e, we prove (3.12).

Using the diagonal dominance of the matrices, M,,,, we can estimate the dependence

of the condition number of Mk(e 2Ak + I) on the ratio a = h2 /6 2 from the behaviour of

the diagonal elements, gii. From the inequalities (3.29) we get an estimate for the choice

of a which minimizes the condition number:

o1optimal -" 1 (3)2 (3.30)

This predicts that the optimal number of grids decreases as the quantity rw increases. One

can also use (3.29) to show that it is better to choose too many grids, (a > ap ), rather

than too few, (a < a0op), (see Figure 3.10). These observations all accurately describe the

experimental results - see the next section.
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Figure 3.10: The condition number estimated from the diagonal terms.
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4. Multigrid Preconditioner - Experimental Results.

Our numerical computations were carried out with three objectives in mind:

i) Observe the optimality of taking the meshsize on the coarsest grid, h, , to approx-

imate the singular perturbation parameter, e.

ii) Check the boundedness of the condition number of the multigrid-preconditioned

system as e and the fine grid meshsize, h, decrease.

iii) Compare the efficiency to other fast solvers, in particular, the corresponding multi-

grid algorithm used as an iterative solver.

We discretize the boundary value problem:

{ onu :=8(-c2,A+)u=f in Q = (0,1)x(0,1) (4.1)Lu = 0 on &2,

on a grid of uniform meshsize, h, as in Section 2.1. Using the multigrid preconditioner, M,
as defined in Section 3.1, we iteratively solve the discrete problem using a preconditioned

conjugate gradient algorithm. Recall that k is the number of grids used in the multigrid

. algorithm, hk = h, and the smoothers, GP , 1 < p < kused to define Mh, depend on the

" damping parameter, w, and a fixed number of smooths per iteration, r. We solve

(C2Ak + I)uk = Fk, (4.2)

starting with initial guess, u'. We call this iterative solver PCCG(-A,sm). The "A"

reminds us that the multigrid preconditioner is based on Ak, the negative of the discrete

Laplacian, and not on the operator A' = e2 Ak + I and "sin" indicates that we smooth

instead of solving exactly on the coarsest grid. Experimentally, we find that a reasonably

good choice of r and w is r = 2 and w = .8 (w = .8 is optimal for the corresponding

2-grid multigrid solver, see [12]).

We first consider solving (4.2) with Fl = 1. For h = 1/64 we show the dependence

of the number of iterations required to reduce the norm of the residual by a factor of 10-6

on the choice of e and hl. See Table 4.1 . For given E and h, the number of iterations

listed is the largest observed for various choices of uo. Note, in particular, the cases where

Table 4.2 displays the number of iterations required to reduce the relative error by a

factor of 106 for various choices of h and e, taking h, = r. Here we used Fk
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Finally, we compare the efficiency of PCCG(-L ,sm) to other elliptic solvers. We

take h = 1/64, e = 1/8, Fk -- 1 and an initial guess consisting of a smooth and a rough

component, namely:

u0 = 10 + 20 cos(647rx) cos(647ry).

We consider a symmetric V-cycle, which is a fast iterative solver for equation (4.1), where

we solve exactly on the coarsest grid (we use a symmetric band solver to invert e2 A1 + I).

We denote this algorithm by MULT. For comparison, an (extreme) choice of a precondi-

tioner for the preconditioned conjugate gradient algorithm is considered, where the pre-

conditioner is based on A' instead of Ak and we solve exactly on the coarsest grid. In

other words, this preconditioner consists of one cycle of the solver, MULT, starting with

initial guess of zero. This algorithm is called PCCG(-e 2 A + I,so). Of course we expect

the behaviour of this preconditioner to be better than that of the simpler (-L ,sm) pre-

conditioner, but we have the added expense of a coarse grid solve and (slightly) more

complicated operator. Of interest to us here is that PCCG( -e'2 A + I,so) is not a signif-

icant improvement over PCCG(-L,sm) if the optimal choice of the number of grids is

used.

In a conjugate gradient algorithm, the error reduction factor, 1Iekil/le..1 -1, typically

decreases as k increases, whereas for a multigrid algorithm the error reduction factor

increases as k increases. Therefore the preconditioned conjugate gradient routines wiil

be more competitive when a large reduction in the relative residual is required and the

multigrid algorithm is more competitive when a smaller reduction in the relative residual

is required.

We also observe that increasing the number of smoothings per grid level will im-

prove the performance of MULT more than it will improve the performance of the

PCCG(-Asm) algorithm. Similarly, optimizing the choice of the damping parameter,

w, will improve MULT more than it will improve PCCG(-L,sm).

Furthermore, one should keep in mind that, though it is difficult to improve the

behaviour of the multigrid preconditioner, it is quite obvious how to improve the rnultigrid

solver. Using better smoothers, or using a full multigrid algorithm (FMG) will dramatically

improve the convergence rate.

Our first comparison is made with parameters which should give the PCCG( -A,s)
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algorithm an advantage. We therefore consider a relatively inefficient choice of the damping

parameter, w = .5, and require the norm of the residual to be reduced by a factor of 10-12

The total cpu time (seconds) is recorded in Figure 4.3, with the number of iterations given

in parentheses next to the time. The PCCG(-A,sm) algorithm appears to be competitive

with MULT, at least for this meshsize, h. The PCCG(-c 2A + I,so) algorithm is only

slightly faster.

We then take a more reasonable value of w = .8 and require the norm of the residual

to be reduced by a factor of 106. The total cpu time is recorded in Figure 4.4, The

multigrid solver, MULT, is now the best choice.

All computations were done on a VAX 11/780.

We end this section with a few comments on the choice of using multigrid by itself as

a solver, or using multigrid (based on a simpler operator) as a preconditioner:

For the model problem (8.1), our experiments indicate that, for modest values of h

and e, a good multigrid algorithm is more efficient than a multigrid-preconditioned

conjugate gradient algorithm.

- In a true variable coefficient problem, (1.1), the multigrid preconditioner has the ad-

vantage of being based on a constant coefficent operator. In thfis case, using multigrid

as a preconditioner should be more competitive than in the model problem case. It

is doubtful whether the multigrid preconditioner could outperform a good multigrid

solver even in this case, but more testing would need to be done.

- In an indefinite problem, where multigrid solvers are more troublesome, one of the

preconditioned conjugate gradient routines for indefinite problems might be preferable.

,3
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Table 4.1 Optimnality of choosing h, ; ,c

Largest (observed) # of iterations required for I1rkf/IrI k 06

Fk 1,w=.8, r~ = 2

1/32 > 20 > 20 20
1/16 12 12 10
1/8 9 8 8
1/4 7 7 9
1/2 7 8 9

Table 4.2 Boundedness of condition number independent of h and E taking e =h].

Largest (observed) # of iterations required for IlUk - UikII/Ijuk - t411 < 10.

Fk 0, .8 , r = 2

h e =1/4 C 1/8 e =1/16 c=1/32

1/32 5 6
1/64 6 6 6

1/128 6 6 6 6
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Table 4.3 Experimental comparisons of approximate cpu time (sec).

Approximate cpu time (no. of iterations) required for Iresktl/Iresol < 10" 1 .

Fk-1 = .5, r = 2

= 1/8 ,h= 1/64 ,u 10+20.cos64rxcos647ry

# of grids MULT:V(2,2) PCCG(-A,sm) PCCG(-el2 Z + I,so)

2 61.3 (20) - (>20) 53.4 (10)
4 44.2 (21) 40.6 (11) 39.2 (10)
6 44.4 (21) 44.8 (12) 39.5 (10)

Table 4.4 Experimental comparisons of approximate cpu time (sec).

Approximate cpu time (no. of iterations) required for ljreskll/IresojI < 10'.

Fk1, w=.8 r=2

e=1/8 ,h= 1/64 ,uO = 10+20cos64-,rxcos64-,ry

# of grids MULT:V(2,2) PCCG(-tLsm) PCCG(-_-KA + I.so,,

2 24.3 (6) 49.9 (14) 35.2 (
4 14.3 (6) 22.4 (5) 29.6 i
6 14.4 (6) 23.8 (6) 29.7 (5)
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5.1 V-cycle Convergence Bounds

In this section we briefly describe the results of applying the same techniques, in

particular Lemma 2.2, to obtain bounds on the asymptotic convergence rates for multigrid

V-cycles used to solve the Dirichlet problem for Poisson's equation in the unit square. The

analysis is simpler in this case because we don't need diagonal dominance. Instead, we

numerically evaluate the f" norm of the appropriate matrix (i.e., the largest row sum

of absolute values) which is a bound on the spectral radius. We present the details of this

analysis in Section 5.2. We first define our basic multigrid V-cycle applied to the linear

system

BkUk = Fk (5.1)

starting with initial guess, uk, with auxiliary problems, BpUp fp, p = 1, 2,... k - 1,

corresponding to discretizations on the coarser grids.

1. Initialize:

fk +- Fk

Uk 4-Uk a

X.
2. Update:

Uk f k

where each ap, p = 2,3,..., k is defined recursively by:

(a.) Smooth r times starting with initial guess = up:

ri - ( Up, ( 5.2a ) :'

(b.) Compute the residual and transfer to the next coarser grid:

rp =p - Bp ip, fp-i =I-r (5.2b)

(c.) If p > 2 then return to (a.) to evaluate &p-. If p = 2 then:

ii = Bfi, (5.2c)

(d.) Add the coarse grid correction:

11 p = Ip -t Ip 1 ap-i (5.2d)

39

2 . . . .. . . . ....- --- -.- . . .



(e.) Smooth s times starting with initial guess = &p:

u = G-(ft,, fp) (5.2e)

For the model problem analysis, we take Qp, AP, I... l , 1 - and G, as defined in

Section 2.1.

5.2 Error Analysis

Bounds on the asymptotic convergence factors of the multigrid cycles M\hk ,., can

be found in the following manner. Let Ck = Uk - Uk be the initial error and ek = Uk - &k

be the error after one multigrid cycle, where Uk satisfies AkUk = fk In terms of the

errors, definition (5.2) becomes:

(a) For p= k,k- 1,...,2

ep 1=A-1 Tp--1 Z

- "i--'p Ap.

(b) For p=1

S= 0.

(c) For p= 2,.,k

EP = ip - I _x 1 - P1).

Recall that OP is the linear part of GP. If Mk e = E , then Mk is defined recursively

by:

M p  = -o(r - M P)A - - IIPP-ICrAp , 2 <p < k (5.3a)

M = 0. (5.3b)

Note that the-as are eigenvectors of Ak and Gk , but not of Mk Define

S, = linearspan {c(,) ,, / (I)} . (5.4)

By formulas (2.12) and (2.13) we see that the Si are orthogonal subspaces which are

invariant under Mk . Therefore a basis of eigenvectors, { v,} , of Mk exists such that,

each vjA can be written as
,= , (5.5)

4'0t (1)
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for some i, 1 i j< Nk , where aIM e IR. Since the a' are orthonormal with respect to the

discrete L 2 inner product, then

(Mk V) V Z VkC(k) Z amoac(k )k

j-, (I) rn-i (1)

a~f(M k (a), (k) _=& )k-, j = Z a' (5.6)
-i () (1) n-i ()

where AM is the eigenvalue of Mk corresponding to vA

A bound on the AM's will be a bound on the asymptotic convergence rate of the

multigrid cycle. Let M, be the 4k-1 x 4k- 1 matrix with (A4,)p,q = (MkQk), a (k))k with

j ,1 ,-. *"j41 - some ordering of all the Zj i (1).

Remark 5.1 Note that for some i's, these jp's are not necessarily unique. For example,

if i = (Nk/2, 1) then (Nk/2, 1) = (Nk - Nk/2, 1).

Remark 5.2 The diagonal elements of Mi are the Rayleigh quotients,

k (k )  (.k))

(k) (k) )

(ak, , . a P)k

and the off-diagonal elements are the contribution from the aliasing vectors.

By Gershgorin's theorem, any eigenvalue A of Mi must satisfy

Ak _ (M 10, (k),a (k))i (MkCa()k (k))(5)
n n)n (1) n(

#n

for some n - i (1) . Therefore a bound on the asymptotic convergence rate, p , is given

by

p < max max )kI (M ) )
1tj<Nj n,'r, (1)n

j-,n (1)

= max I (M a(,a(k ) (58)jil<Nk,

for the k-grid problem with meshsize hk = 1/Nk on the fine grid.

In section 5.3 we derive formulas for a bound on the righthand side of (5.8).
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5.3 Derivation of Bounds on the Convergence Rate

For a fixed fine meshsize h, a given number of grids k, r smoothings and a damped

Jacobi parameter W, we derive formulas for a constant Ck,r,h,, < 1, independent of i

which is a bound on the asymptotic convergence rate. In Section 5.4 we give values of

these constants for various values of h, k and r using a typical value of w.

By (5.8) it is enough to bound Z i(Mk (k)(, a k))k I independent of i . Divide
j-t (1)

the sum into two parts,

"3 I (Mfack) , * j = (Mka(k) ,' )k (5.9)

j,,,i (1)

+> (MkC,(k) a~k))k
j-i (0)

Ji
=:Di + Ji,

where Di is the "diagonal part" and Ji is the "aliasing part" of the sum.

Let i = (z2,i 2 ), k, r, h and wo be fixed. Define

P = -- cos2 ) (5.10a)

( ) 2 ( i2 rh p)\7p= = cos 2 (5.10b)

• -,- (P) _(P)
gp- ( aj , i )p, (5.10c)

e= (( G a , a p (5.10d)

O0=0

and

VP 1) (5.10e)

where the z, r, h and w dependence has been suppressed in the notation and only the

grid level is displayed.

We have the following theorem.
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Theorem 5.1

k-I k ik k

Di = gk- 2 .Ckvk S :, I 4g, 7, - 4Y.1,49Mq2 2) (5 1l1a
p=2 m=R+ I1 m=2

and

k-1 ( k k.1

p72 rm---- p- 1 m ---p+- 1

+Ck -k

M=2M2

Remark 5.3 Theorem 5.1 allows us to obtain a bound on the asymptotic convergence

rate that is no more complicated than the diagonal elements themselves.

Before proving Theorem 5.1 we find expressions for the inner products

(M ka(k), (k))k

Lemma 5.1

For any j -Z' (1),

k-I

k), (k))k -
2 wckvk E f( f 4gm kmrlm (0(P, Jk))}

p=2 m=p+l

CI V I. I 4 , 7

M=1
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Proof of Lemma 5.1

We prove by induction that for every .s < k

.11 -, ,k 3 = g3(a a fp 4gmiSr.,, a l, a'

p=2 m = p+ I

TV3
" " 4g ,, ,rm ,(Ia I  (5 .12 b )

Taking s = k gives (5.12a).

We start with s = 2 From (5.3), (5.10) and (2.12),

2) r (1) (2) r..-2 (2)
C"2 )) 2  -(G'a,- o, (Aj' 2 A 2 ,) (5.13)

(,(2), ((2) 2

g2 ( ),a2 )2 g2272 (a( ,12' ( 2))l
VI

Using 4c 2 =cI gives us (5.12a) for k = 2.

Assume (5.12a) is true for k = s - 1 grids, s > 3. For the s-grid problem, (5.3),

(5.10) and (2.12) give

(M ! a, ,,-, a (I(, a, M,-A I--G,-.- (,) I- (3)\_1
(., = a~) /,, (a) ((I - p ~)A -_1I:, .,rA-ta ,I' a1 1 ..

L/8 (a -i) a( ,-1 (
-g.. - - G793 ,( a,

+ v -a)_ (5.14)

Vs-1

We factor 1 - g,_1 = 2,,'c,_v 1 ,-.f,_ 'Using the inductive hypothesis and using 4c, =

c,_ 1 finishes the proof. U

Proof of Theorem 5.1

(a) Using Lemma 3.1 with I 15 10c) and (2 12) proves (5 1la)

(b) To prove 5. 11, t. split the Kr1(i leveLs by plartitioning the j - 1). j . See

Figure 3.1 for a s-hematic i11iitrat iou for 4 = 3 For each ri = l . - i co lider

the j's siich that j i i rz Iut j i rt - Lemma 3. 1. Ltmma 2 1 an(] Lemma
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"K -- W. 4-. -7T - 7K - -7 W NNN N h.W k

2.3 show that

k-i

n=1 j-i (n)
J-4t (n+1)

k-i n n k

2 , ckVk >3(1-n+7n+i) Y~fp( 1 I n -qm T~(J I , inrn7m)

k-1 nk
nCkl j:1 --- l 7l rj 77 r~pl41 mIMC-L1 )(I (

Changing the order of summation gives

k - 4k k

p=--2 n=p M=p.+l n=P.+ 1

J 
c

kkl (V1 n+177.+) rm 77J 4 gm g m r'7n (316)

n= MmP I M=1n2 l [ k 1 ( l rm77l

The quantitites in the square brackets in (5.16) equal

k

mm 7,n

and
k

1- I- 77m"n

respectively, and therefore (5.11b) has been proved. I

We use this theorem to find bounds on the multigrid V-cycle asymptotic convergence

rate for the k-grid problem with a given damped Jacobi parameter w and r iterations per

smooth. The results are given in the next section.

5.4 Computed values of the asymptotic convergence bounds

Ideally, one would be able to compute k-grid convergence bounds independent of

h The 4 k-1 x 4 k-1 matrix, M,, can be written as a 4k - x x 4 k-I matrix, V(1., 7f),

with variable entries depending on the continuous variables c and e (0, 1) evaluated at

- (k) I (k)c tand rl rjk
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In the two grid case one could get ar, analytic formula for the characteristic equation

of .Vf , r/) (a polynomial of degree 4 for fixed c, r . find analytic expressions for the

eigenv'alues and then find the supremum of these expressions over all and r7 in the unit

square. This would give an exact 2-grid asymptotic convergence rate independent of h . In

practice this is too much work even in the simple 2-grid case. Instead, one chooses a value

of h = 1/N and computes the spectral radii of M, for each z, I I 1< N, keeping track

of the largest. One then repeats the procedure for different values of h and so constructs

a table as in [12] see Table 5.1 From such tables one can predict the h-independent

convergence rates.

In the k grid problem, k > 2 each .%4, is a 4 k-1 x 4 k-1 matrix and therefore

computing the spectial radius for each i, 1 Z I < N is expensive, especially for small

h . We therefore use Theorem 5.1 and Gershgorin's Theorem to compute a bound on

the spectral radius of .", for each 1 . This amounts to roughly twice the work of just

evaluating the diagonal elements.

The sharpest bounds on the asymptotic convergence rates for the analysis of the

V-cycle are obtained by these techniques when no smoothing is performed on the coarse-

to-fine part of the cycle, i.e., s = 0 in step d. This is called an M\ cycle. The symmetric

cycle, i.e., s = r, is called an MG cycle. We consider two discretizations of the Laplacian,

the five point discretization, BP = AP, as given in Section 2. and a certain nine point

discretization given by the following stencil:

I -I -I -II
-1 +8 -1 (5.17)

Yh2p

The corresponding V-cycles will be denoted by, e.g.. M5 \, or IG 9 , to indicated which

discretization is being used.

We consider a M5 \ algorithm and compare our theoretical bounds to the experimen-

tally observed asymptotic convergence rates. In order to compare our two grid bounds

to the exact two grid convergence rates obtained by the model problem analysis in [8].

we consider a damped Jacobi paramete , = 4/5. Experimentally, this is a goodl choice.

though its optimality depends on the number of smoothings and the number of grids We

take r = 1, 2. 3 or 4 smoothings (smoothing only from fine to coarse meshes). Tables 5.2-

5.5 show the convergence bounds for conmonly used meshsizes. Table 5.6 indicates the
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limiting behaviour of these rates for very small h and large number of grids. The experi-

mentally observed asymptotic convergence rates are shown in Table 5.7 for r = 12. 3. 4.

- - 4/5 and h = 1/64. For exact two grid convergence rates, see Table 5 1

In practice, as k increases there is not as much degredation in the convergence rate

as Tables 5.1-5.7 would indicate.

We compare our bounds to the finite element bounds of [8], using the IG 9 cycle

given by taking BP = .4 and s = r. The comparison is possible because the operators

.AP satisfy:

= I' 4I 1 for p= 12 ,k (5.13)
p P p-1

Eigenvectors of Ap are also eigenvectors of A,. We also note that for a symmetric V-

cycle, convergence bounds in the energy norm are equivalent to asymptotic convergence

bounds given by the spectral radius. Our bounds are given in Table 5.8 for , = 3/4.

h = 1/64. and r = 1,2, 3, 4. In the next to the last column of Table 5.8 we show the

bounds (which are independent of the number of grids used) obtained by the methods of

318. We also calculate the exact two grid convergence rates for MG 9 , as in [12). These

numbers are given in the last column of Table 5.8. In this symmetric case, at least for small

r, our bounds are larger than the finite element bounds because in the Fourier analysis we

essentially throw away the post smoothing factors in the off-diagonal terms in order to be

able to apply Lemma 5.1.

Table 5.1 145\ Two grid asymptotic convergence rates W = .8

h r=I r-2 r=3 r=4

1/16 .592 .351 .208 135
1/32 .598 .358 .214 .137
1/64 .600 .359 .216 .137
1/128 .600 .360 .216 .137
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Table 5.2 1 5 \ Asymptotic convergence bounds r = .8 r = 1

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids S grids

1/16 .615 .719 .715
1/32 .622 .749 .769 .750
1/64 .624 .758 .797 .800 .787

1/128 .625 .760 .808 .826 .820 .815
1/256 .625 .761 .812 .835 .835 .830 .828

Table 5.3 M5\ Asymptotic convergence bounds = 8 r = 2

h 2 grids 3 grids 4 grids 5 grids 6 grds 7 grids 8 grids

1/16 .369 .454 .455
1/32 .370 .460 .481 .481
1/64 .370 .466 .490 .491 .491
1/128 .370 .467 .495 .499 .500 .499

1/256 .370 .468 .495 .502 .505 .505 .504

* Table 5.4 NI5 \ Asymptotic convergence bounds w = .8 , r = 3

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids

1/16 .274 .348 .367

1/32 .274 .348 .367 .372
1/64 .275 .350 .370 .372 .373
1/128 .275 .350 .371 .376 .376 .376
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Table 5.5 M 5 \ Asymptotic convergence bounds w = .8 , r =4

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids

1/16 .220 .284 .302
1/32 .221 .284 .302 .307
1/64 .221 .284 .302 .307 .308
1/128 .221 .284 .302 .307 .308 .309

Table 5.6 A/fs\ Asymptotic convergence bounds for small h

w=-.8

r=l r-2 r=3 r=4

1/2048 .843 .5105 .37779 .3087905
11 grids

1/4096 .846 .5111 .37777 .3087916
12 grids
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Table 5.7 .1 5 \ Experimental asymptotic convergence rates

=.8, h =1/64

r 2 grids 3 grids 4 grids 5 grids 6 grids

1 .600 .600 .600 .600 .600
2 .360 .360 .360 .360 .360
3 .216 .228 .233 .242 .246
4 .137 .158 .171 .181 .193

Table 5.8 AlI G9  A comparison of the theoretical bounds

=.75, h =1/64

bounds exact 2 grid
r 2 grids 3 grids 4 grids 5 grids 6 grids from [8] cony, rates

1 .686 .717 .816 .860 .879 .40 .249
2 .275 .299 .348 .362 .364 .25 .067
3 .121 .147 .161 .162 .162 .18 .040
4 .079 .114 .124 .124 .124 .14 .029
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APPENDIX

A.1 Proof of Theorem 3.4

Fix i = (i 1 , Z2), h,k, r and La as in Section 3.3. Define p, i7p, gp, ep and v, as is

(3.16a-e). As seen in the proof of Lemmta 3.1,

(A. 1)

Therefore a recursion formula for D(P is

a7, = 2wc,e p =1I,.,k (A.3a)

bp= g2272a -,a(r-''P~ p =1,... ,k (A.3b)

bo = 0. (A.3c)

The following four lemmas are all proved by direct calculation.

Lemma A.1

For each p 1, 2,. k.

a.) a7, < 4rwc ,  (A. 4a)

and b.) a,, 4w41 - w)c , . (A.4b)

Lemma A.2

For each p 2,...k

a.) b7, < 1 (A.5a)
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and if cpu. <_ 1/4,

b.) bp 2!_ (1 - 4(1 + rw)cpp). (A.5b)

Lemma A.3

For each p = 2,... k

a.) vp /vp- < 1--- (A.6a)

and b.) vp/vp_ 1 > 1. (A.6b)

Lemma A.4

if < cpv - p =2,..,k and < 3 < 2, then

a.) Cp-np-n < a~ (A. 7a)
4a2

a n d b .) c p , p _ > 4>, _ +4 ( 1 4 O . ,3 + 1 (

Proof of Lemma A.1

Inequality (A.4a) follows immediately from the inequality

21 -r(1- x)2  < 2rx (A.8)

since Ji-xJ < 1 where x =2wcpvp.

Using the inequality

1-(1-X) -r > x(2-x) for all x such that 1I- x 1, (A.9)

it is clear that

ap ! 2wcp(2-2wcpvp), (A.10)

from which follows (A.4b) since 0 < Cpvp < 1. I
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Proof of Lemma A.2

Since 2 - ,',- ,
p p = 2 (A.11)

where 0 < p, rp < 1 and Igp = 11 - 2wcpvp[ < 1, (A.5a) is obvious.

If cpvp 1/4, then (1 - p) and (1 - rp) < 1/2 and therefore
(p-1) (p- 1)

cri , )p-I1

Moreover,

2 2p p> 1 - 4Cpvp, (A. 12)".

It is also clear that (1 - 2wcpvp)2r > 1 - 4rwcpvp. Combining these inequalities gives

bp> (1 - 4rwcpvp)(1 - 4cpvp)

(A.13)

> 1 - 4(1 + rw)cpvp

Proof of Lemma A.3

Since 0 < p, < 1,

- p(1 -p)(l -( p) -7p(1 - p)(1 - 77p) <0. (A.14)

Factoring the lefthand side gives

pTip(2 - p - rip) 5 p(] - p) + ?7p(1 - rip). (A.15)

Recall that
4(2 - , - rip)VP = h. ..

and
4(2 - p-1 - 77p-._) 4 ( p(1 - p) + r/p(1 - rp)) (A.16)

hp_ h2p
p-i p

Thus by (A.15)

Vp-1 - p77p

The second inequality, (A.6b), is clear since

P (1 p) + (1 n7)
> 1(A. 17)LI - -p( p - ri) -+ rp 7p)

and 0 < p, 7p < 1. _
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Proof of Lemma A.4

* if

f cpVp < 7 < 1/4 (A.18a)

then
4- (1- 2-y) Cp-lp-I ! 4r( - 2). (A. ISb)

Note that this is just the calculus problem: Find the maximum and minimum of f(x, y) =

x (1-x)+y(1-y) in 2= {(x,y): 2-/ _ x+y < 2r, x > 0, y 0}, and the solution

is straightforward.

By induction, it is easy to see that
Ti-i( 2 )\/

40-f I 2+ Cp-nVp-n 3n (A.19)4 a-n+1 r 1 4,'+1_ j  ! p v_,<4 '-
j=0

By (A.18) this is true for n = 1, i.e.

/3 2/3 /3 (A.20)-,(1 4p -+) c-1 1  4 -.

- Assume (A.19) is true for cp-n+l Upn+l, then

> 3 n-2 / 2 1 2/3 n-2 2/3
- 4 7+-2 H 4 T+-17 4-n+2 1 4 11j=fo j=0 O-"

> /3 n-2 2,_2_A.1
_ 4a-n+l ( 1 4Y+Ij)) ( 4a_,+2 (.21

k7=O

-,3~ i(n-I 23

--4 _+l 1 4c_+1-i)
j=O

2 nn- 2 
4 -+2  (-11-I> T1 ,1i 40r+ 1 4_

=0 \J= (A .22)

> 2
- 3 4c, - n+ l
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_Y-Y- - -q x -- ------w- - - - - - -- p.

The upper bound for cp_,upn is obvious. I

Proof of Theorem 3.4 part a.
W(1 - W) 22rw h2 d t

a.) (h Dk) < h for vk < T
max(2, d(l +rw)) 1 D 3 -' -

.

From lemmas A.la and A.2a, p =k, k - 1,...,2,

K) < 4rw , +D (A.23)
(p-2 P)

On the coarsest grid, D 1 ) < 4rwcl. Hence by the definition of the cp's (2.15)

D~k) L6racwD k)  4 rw c) - (A.2 4)
(p=-1 P)

Using cl = h,/8 gives the upper bound

D(k) < 2-rwh 2  (A.25)

To get the lower bound, use an induction argument. By lemma A.16,

D > 4w(I L;)cl w(1 - w)h1  (A.26)
2

Let 1 < p < k and assume that

2%

D(p) > w(1 -uw)h (A.27)-
max(2, d(1 + rw))" ( )

By rearranging terms, using lemmas A.lb and A.2b (which can be used since Vk < d/h v

implies cv p __ d/(8. 4P) < 1/4 by lemma A.4a) it is seen that:

m , (1 - w )) + 4w(1 - w)cp+l 1 - ( + + r ) (A.28)
max (2,d( rw)x(2,d(1 + r))

d
Lemma A.3b guarantees that vp :S Vk :S h and therefore the last term in (A.28) is

I-
h2n

positive and can be thrown out. This proves part a.) of Theorem 3.4.
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Proof of Theorem 3.4 part b.

dw(1 - w) 1 (k) db.) 8( < D("k < - for v i  > -

8(1 + rw)Vk Vk h2 '

Using the definition of ck, Vk > d/h' implies CkVk > d/(2 4 k+1) . For each pi,

A(") < 1. To see this, first note that

=)  (1 - 2wcill)2 _< 1. (A.29)

Lemma A.3a together with the definition of bp imply

bp < (1 - 2Lcpvp)2rVp_l (A.30)
VP

Combining (A.29) and (A.30) with the definition of ap, gives D( P) < I/ p.

For the lower bound, divide the argumen into two cases. Define

-Y = [log 4 2(1 + rw)] (A.31)

where [x] means the greatest integer in x.

d
case I CkVk > (A.32)

- 2" "

d
case 2 2 4 + - CkVk :S 1 for some integer a, -y<a < k. (A.33)

By the definition of -y,
1
-(1 + rw) < 4f < 2(1 + rw). (A.34)

For case 1, Lemma A.lb gives

4w(l - w) d d(1 - w)
av > -> (+rw)Vk (A.35)

For case 2, look at the finest grid on which the eigenvector is "rough enough" For

k- a + -y, lemma A.4 shows that

(I d pp( 6

2 -4t+ 13.r+1 - - 24 (A36)
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Therefore on p

D()> a, ! 4w( - w)cj, > d( 1 -wLL>)L. (A.37)
8 (1 + rw)vp'

* Now this information needs to get back to the fine grid, Qk. On £2P, for p > ~,lemma

A.4 says

dc-~p+ 3 d 4c N ~~ d 0-p(.8

Now using lemmas A.16, A.26 and A.36 and rearranging terms,

8(1 + rw)vp

_d(1 - w)w [1wl u~pI- d](A.39)

-8(1 + rw)vp 8

> d(1 - u.)w
-8(1 + rw)vp'

Since this is true for all p > ~,take p =k. U
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